Global Entropy Solutions in L∞ to the Euler Equations and Euler-poisson Equations for Isothermal Fluids with Spherical Symmetry

نویسنده

  • TIAN-HONG LI
چکیده

GLOBAL ENTROPY SOLUTIONS IN L∞ TO THE EULER EQUATIONS AND EULER-POISSON EQUATIONS FOR ISOTHERMAL FLUIDS WITH SPHERICAL SYMMETRY ∗ GUI-QIANG CHEN† AND TIAN-HONG LI† Abstract. We prove the existence of global entropy solutions in L∞ to the multidimensional Euler equations and Euler-Poisson equations for compressible isothermal fluids with spherically symmetric initial data that allows vacuum and unbounded velocity outside a solid ball. The multidimensional existence problem can be reduced to the existence problem for the one-dimensional Euler equations and Euler-Poisson equations with geometrical source terms. Due to the presence of the geometrical source terms, new variables–weighted density and momentum–are first introduced to transform the nonlinear system into a new nonlinear hyperbolic system to reduce the geometric source effect. We then develop a shock capturing scheme of Lax-Friedrichs type to construct approximate solutions for the weighted density and momentum. Since the velocity may be unbounded, the Courant-Friedrichs-Lewy stability condition may fail for the standard fractional-step Lax-Friedrichs scheme; hence we introduce a cut-off technique to modify the approximate density functions and adjust the ratio of the space and time mesh sizes to construct our approximate solutions. Finally we establish the convergence and consistency of the approximate solutions using the method of compensated compactness and obtain global entropy solutions in L∞. The solutions we obtain allow unbounded velocity near vacuum, one of the essential difficulties here, which is different from the isentropic case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanishing Viscosity Solutions of the Compressible Euler Equations with Spherical Symmetry and Large Initial Data

We are concerned with spherically symmetric solutions of the Euler equations for multidimensional compressible fluids, which are motivated by many important physical situations. Various evidences indicate that spherically symmetric solutions to the compressible Euler equations may blow up near the origin at certain time under some circumstance. The central feature is the strengthening of waves ...

متن کامل

Euler Equations and Related Hyperbolic Conservation Laws

Some aspects of recent developments in the study of the Euler equations for compressible fluids and related hyperbolic conservation laws are analyzed and surveyed. Basic features and phenomena including convex entropy, symmetrization, hyperbolicity, genuine nonlinearity, singularities, BV bound, concentration, and cavitation are exhibited. Global well-posedness for discontinuous solutions, incl...

متن کامل

Dependence of Entropy Solutions in the Large for the Euler Equations on Nonlinear Flux Functions

We study the dependence of entropy solutions in the large for hyperbolic systems of conservation laws whose flux functions depend on a parameter vector μ. We first formulate an effective approach for establishing the L-estimate pointwise in time between entropy solutions for μ 6= 0 and μ = 0, respectively, with respect to the flux parameter vector μ. Then we employ this approach and successfull...

متن کامل

Entropy Solutions of the Euler Equations for Isothermal Relativistic Fluids

We investigate the initial-value problem for the relativistic Euler equations governing isothermal perfect fluid flows, and generalize an approach introduced by LeFloch and Shelukhin in the non-relativistic setting. We establish the existence of globally defined, bounded measurable, entropy solutions with arbitrary large amplitude. An earlier result by Smoller and Temple for the same system cov...

متن کامل

Blowup Phenomenon of Solutions for the IBVP of the Compressible Euler Equations in Spherical Symmetry

The blowup phenomenon of solutions is investigated for the initial-boundary value problem (IBVP) of the N-dimensional Euler equations with spherical symmetry. We first show that there are only trivial solutions when the velocity is of the form c(t)|x| (α-1) x + b(t)(x/|x|) for any value of α ≠ 1 or any positive integer N ≠ 1. Then, we show that blowup phenomenon occurs when α = N = 1 and [Formu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004